Pre Calculus

Diagnostic Test

Rules

- This diagnostic test consists of questions from all chapters of the course. If the student scores at least 90% in this test, then the student can skip this course. Signup for the next course.
- If the student scored less than 90% of this test, then you should join this course.
- The student should try to answer all of the questions without a calculator and without any help. No time limit and no negative scoring.
- Each question carries 1 point. Total number of answers are 28. You should score at least 25 out of 28 to score 90% or above.
- Answers are provided at end of test. Print this test if possible but keep the answer sheet away until end of test.
(1) Find the modulus of the following complex numbers.

$$
2.2+6.4 i
$$

(2) Perform the following complex subtractions.

$$
(9.2-1.4 i)-(4.4-3 i)
$$

(3) Perform the following complex divisions.

$$
\frac{4.4-2.3 i}{1.8-3.6 i}
$$

(4) Find the slopes $5(y-1)=-4(x+2)$
(5) Which of the following pairs of lines are parallel?
a) $y=3 x+2$
$y=5 x+2$
b) $\begin{aligned} y & =5 x+5 \\ y & =5 x-2\end{aligned}$
c) $2 y=4 x+1$
$y=2 x-10$
(6) Evaluate the following linear functions at the domain values that are indicated.

$$
f(x)=3.5 x-5.25 \quad \text { Find } f(2), f(2.5), \text { and } f(-1.5)
$$

(7) Find the interval for \boldsymbol{x} that satisfies the following inequalities. $-3 x+5 \leq 10$
(8) Find the real roots of the following quadratic equations by factoring.

$$
y=4 x^{2}+4 x-3
$$

9) Find the real roots of the following quadratic equations by completing the square.

$$
\begin{equation*}
y=-2 x^{2}+10 x+12 \tag{10}
\end{equation*}
$$

Use the quadratic formula to find the real or complex roots of the following quadratic equations.

$$
y=2 x^{2}+2 x+1
$$

(11) $5 x^{5}+3 x^{4}+2 x^{2}+7 x$ minus $2 x^{5}+3 x^{4}-4 x^{3}+3 x-5$
(12) Find the following polynomial quotients.
$2 x^{4}+11 x^{3}+11 x^{2}-3 x+4$ divided by $x+4$
(13) Factor the following polynomials

$$
x^{3}+3 x^{2}+9 x+27
$$

(14) Decompose the following polynomial fractions into partial fractions.

$$
\frac{2 x^{2}+7 x+3}{x^{3}+2 x^{2}-x-2}
$$

(15) Simplify the following exponential equations

$$
y=\frac{5^{3} \cdot\left(5^{2}\right)^{5 x}}{5^{x-1}}
$$

(16) Simplify the following so that there are no products or powers in the exponentials.

$$
y=\frac{e^{2} \cdot\left(e^{3}\right)^{4 x}}{e^{x+1}}
$$

(17) Find the logarithms $\log _{3} \frac{1}{9}$

(18) Convert 315° to angles in radians.

19

The radius of a circle is 6 inches. An angle of 1.5 radians subtends an arc of length salong the circumference of the circle. What is the length of the arc?
(20) Use your calculator to find the inverse sines of -1
(21) If $\tan \alpha=\frac{3}{4}$ and $0^{\circ}<\alpha<90^{\circ}$, find $\tan 2 \alpha$, using the double angle formulas.
(22) Find the roots $y=x^{3}-5 x^{2}-2 x+24$
(23) Convert (5, 30°) polar coordinates to $x-y$ coordinates.
(24) Convert $(4,3) x-y$ coordinates to polar coordinates.

The following infinite sequences are defined by their first two terms and a formula for their general term. Write the third, fourth, and fifth terms.

$$
\begin{align*}
& \frac{1}{2}, \frac{4}{3}, \ldots, \frac{n^{2}}{(n+1)}, \ldots \tag{25}\\
& \frac{1}{2}, \frac{1}{4}, \ldots, \frac{1}{2^{n}}, \ldots \tag{26}
\end{align*}
$$

(27) Find the sum of $\sum_{k=1}^{2(k-1)}$
(28) Find the binomial expansions. $(x+y)^{5}$

Answer Keys

1. 6.77
2. $4.8+1.6 \mathrm{i}$
3. $1+0.722 i$
4. $M=-4 / 5$
5. b, c
6. $f(2)=1.75, f(2.5)=3.5, f(-1.5)=-10.5$
7. $x>=-5 / 3$
8. $x=1 / 2, x=-3 / 2$
9. $X=-1, x=6$
10. $x=-\frac{1}{2}+\frac{1}{2} i, x=-\frac{1}{2}-\frac{1}{2} i$
11. $3 x^{5}+4 x^{3}+2 x^{2}+4 x+5$
12. $2 x^{3}+3 x^{2}-x+1$
13. $(x+3)\left(x^{2}+9\right)$
14. $\frac{2}{x-1}+\frac{1}{x+1}+\frac{-1}{x+2}$
15. $y=5^{x+4}$
16. $y=e^{11 x+1}$
17. -2
18. 5.50
19. 9 inches
20. -90° or 270°
21. 3.429
22. $x=-2$ or $x=3, x=4$
23. $x=4.33 \quad y=2.5$

Answer Keys

24. $r=5 \quad \theta=36.9^{\circ}$
25. $\frac{9}{4}, \frac{16}{6}, \frac{25}{6}$
26. $\frac{1}{8}, \frac{1}{16}, \frac{1}{32}$
27. 30
28. $x^{5}+5 x^{4} y+10 x^{3} y^{2}+10 x^{2} y^{3}+5 x y^{4}+y^{5}$
